Wednesday, April 9, 2014

Hybrid Electric Vehicle

INTRODUCTION

Have you pulled your car up to the gas pump lately and been shocked by the high price of gasoline? As the pump clicked past $20 or $30, maybe you thought about trading in that SUV for something that gets better mileage. Or maybe you are worried that your car is contributing to the greenhouse effect. Or maybe you just want to have the coolest car on the block.Currently, there is a solution for all this problems; it's the hybrid electric vehicle. The vehicle is lighter and roomier than a purely electric vehicle, because there is less need to carry as many heavy batteries. The internal combustion engine in hybrid-electric is much smaller and lighter and more efficient than the engine in a conventional vehicle. In fact, most automobile manufacturers have announced plans to manufacture their own hybrid versions.How does a hybrid car work? What goes on under the hood to give you 20 or 30 more miles per gallon than the standard automobile? And does it pollute less just because it gets better gas mileage. In this seminar we will study how this amazing technology works and also discuss about TOYOTA & HONDA hybrid cars.



WHAT IS A "HYBRID ELECTRIC VEHICLE"?

Any vehicle is hybrid when it combines two or more sources of power. In fact, many people have probably owned a hybrid vehicle at some point. For example, a mo-ped (a motorized pedal bike) is a type of hybrid because it combines the power of a gasoline engine with the pedal power of its rider.Hybrid electric vehicles are all around us. Most of the locomotives we see pulling trains are diesel-electric hybrids. Cities like Seattle have diesel-electric buses -- these can draw electric power from overhead wires or run on diesel when they are away from the wires. Giant mining trucks are often diesel-electric hybrids. Submarines are also hybrid vehicles -- some are nuclear-electric and some are diesel-electric. Any vehicle that combines two or more sources of power that can directly or indirectly provide propulsion power is a hybrid.The most commonly used hybrid is gasoline-electric hybrid car which is just a cross between a gasoline-powered car and an electric car. A 'gasoline-electric hybrid car' or 'hybrid electric vehicle' is a vehicle which relies not only on batteries but also on an internal combustion engine which drives a generator to provide the electricity and may also drive a wheel. In hybrid electric vehicle the engine is the final source of the energy used to power the car. All electric cars use batteries charged by an external source, leading to the problem of range which is being solved in hybrid electric vehicle.


HYBRID STRUCTURE

You can combine the two power sources found in a hybrid car in different ways. One way, known as a parallel hybrid, has a fuel tank, which supplies gasoline to the engine. But it also has a set of batteries that supplies power to an electric motor. Both the engine and the electric motor can turn the transmission at the same time, and the transmission then turns the wheels.

Tuesday, April 1, 2014

Paper Battery

Definition
A paper battery is a flexible, ultra-thin energy storage and production device formed by combining carbon nanotube s with a conventional sheet of cellulose-based paper. A paper battery acts as both a high-energy battery and supercapacitor , combining two components that are separate in traditional electronics . This combination allows the battery to provide both long-term, steady power production and bursts of energy. Non-toxic, flexible paper batteries have the potential to power the next generation of electronics, medical devices and hybrid vehicles, allowing for radical new designs and medical technologies.
Paper batteries may be folded, cut or otherwise shaped for different applications without any loss of integrity or efficiency . Cutting one in half halves its energy production. Stacking them multiplies power output. Early prototypes of the device are able to produce 2.5 volt s of electricity from a sample the size of a postage stamp
Paper battery offers future power
They have produced a sample slightly larger than a postage stamp that can store enough energy to illuminate a small light bulb. But the ambition is to produce reams of paper that could one day power a car.
Professor Robert Linhardt, of the Rensselaer Polytechnic Institute, said the paper battery was a glimpse into the future of power storage. The team behind the versatile paper, which stores energy like a conventional battery, says it can also double as a capacitor capable of releasing sudden energy bursts for high-power applications.
How a paper battery works
While a conventional battery contains a number of separate components, the paper battery integrates all of the battery components in a single structure, making it more energy efficient.
Integrated devices
The research appears in the Proceedings of the National Academy of Sciences (PNAS).
"Think of all the disadvantages of an old TV set with tubes," said Professor Linhardt, from the New York-based institute, who co-authored a report into the technology.
"The warm up time, power loss, component malfunction; you don't get those problems with integrated devices. When you transfer power from one component to another you lose energy. But you lose less energy in an integrated device."
The battery contains carbon nanotubes, each about one millionth of a centimetre thick, which act as an electrode. The nanotubes are embedded in a sheet of paper soaked in ionic liquid electrolytes, which conduct the electricity. The flexible battery can function even if it is rolled up, folded or cut. Although the power output is currently modest, Professor Linhardt said that increasing the output should be easy.
Construction and Structure
Construction
A very brief explanation has been provided.
•  Cathode: Carbon Nanotube (CNT)
•  Anode: Lithium metal (Li+)
•  Electrolyte: All electrolytes (incl. bio electrolytes like blood, sweat and urine)
•  Separator: Paper (Cellulose)
The process of construction can be understood in the following steps:
•  Firstly, a common Xerox paper of desired shape and size is taken.
•  Next, by conformal coating using a simple Mayer rod method, the specially formulated ink with suitable substrates (known as CNT ink) is spread over the paper sample.
•  The strong capillary force in paper enables high contacting surface area between the paper and nanotubes after the solvent is absorbed and dried out in an oven.
•  A thin lithium film is laminated over the exposed cellulose surface which completes our paper battery. This paper battery is then connected to the aluminum current collectors which connect it to the external load.
•  The working of a paper battery is similar to an electrochemical battery except with the constructional differences.
The paper battery is designed to use a paper-thin sheet of cellulose (which is the major constituent of regular paper, among other things) infused with aligned carbon nanotubes. The nanotubes act as electrodes, allowing the storage devices to conduct electricity. The battery will currently provide a low, steady power output, as well as a supercapacitor’s quick burst of energy. While a conventional battery contains a number of separate components, the paper battery integrates all of the battery components in a single structure, making it more energy efficient and lighter.